Modularity of stress response evolution.

نویسندگان

  • Amoolya H Singh
  • Denise M Wolf
  • Peggy Wang
  • Adam P Arkin
چکیده

Responses to extracellular stress directly confer survival fitness by means of complex regulatory networks. Despite their complexity, the networks must be evolvable because of changing ecological and environmental pressures. Although the regulatory networks underlying stress responses are characterized extensively, their mechanism of evolution remains poorly understood. Here, we examine the evolution of three candidate stress response networks (chemotaxis, competence for DNA uptake, and endospore formation) by analyzing their phylogenetic distribution across several hundred diverse bacterial and archaeal lineages. We report that genes in the chemotaxis and sporulation networks group into well defined evolutionary modules with distinct functions, phenotypes, and substitution rates as compared with control sets of randomly chosen genes. The evolutionary modules vary in both number and cohesiveness among the three pathways. Chemotaxis has five coherent modules whose distribution among species shows a clear pattern of interdependence and rewiring. Sporulation, by contrast, is nearly monolithic and seems to be inherited vertically, with three weak modules constituting early and late stages of the pathway. Competence does not seem to exhibit well defined modules either at or below the pathway level. Many of the detected modules are better understood in engineering terms than in protein functional terms, as we demonstrate using a control-based ontology that classifies gene function according to roles such as "sensor," "regulator," and "actuator." Moreover, we show that combinations of the modules predict phenotype, yet surprisingly do not necessarily correlate with phylogenetic inheritance. The architectures of these three pathways are therefore emblematic of different modes and constraints on evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and Functional Prediction of Long Non-Coding RNAs Responsive to Drought stress in Lens culinaris L.

Drought stress is one of the main environmental factors that affects growth and productivity of crop plants, including lentil. In the course of evolution evolution, crucial genetic regulations mediated by non-coding RNAs (ncRNAs) have emerged in plant in response to drought and other abiotic stresses. In the present study, after identifying lncRNAs within the expression profile of lentil, RNA-s...

متن کامل

Is evolvability involved in the origin of modular variation?

Lipson et al. (2002) presented an elegant linear algebraic formalism to define and study the evolution of modularity in an artificial evolving system. They employed simulation data to support their suggestion that modularity arises spontaneously in temporally fluctuating systems in response to selection for enhanced evolvability. We show analytically and by simulation that their correlate of mo...

متن کامل

Mining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain

Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...

متن کامل

Breakdown of Modularity in Complex Networks

The presence of modular organization is a common property of a wide range of complex systems, from cellular or brain networks to technological graphs. Modularity allows some degree of segregation between different parts of the network and has been suggested to be a prerequisite for the evolvability of biological systems. In technology, modularity defines a clear division of tasks and it is an e...

متن کامل

A new phylogenetic test for comparing multiple high-dimensional evolutionary rates suggests interplay of evolutionary rates and modularity in lanternfishes (Myctophiformes; Myctophidae).

The interplay between evolutionary rates and modularity influences the evolution of organismal body plans by both promoting and constraining the magnitude and direction of trait response to ecological conditions. However, few studies have examined whether the best-fit hypothesis of modularity is the same as the shape subset with the greatest difference in evolutionary rate. Here, we develop a n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 21  شماره 

صفحات  -

تاریخ انتشار 2008